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In the present article, we construct the fundamental solution to a system of differential equations in 
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1. Introduction 
 
 The theory of elasticity concerning elastic materials consisting of vacous pores (voids) distributed 
throughout the body has become very important due to its theoretical and practical relevance. Problems 
concerning voids play a vital role in the practical problems of geological and synthetic porous media where 
the classical theory is inadequate. Mackenzie (1950) was perhaps the first to estimate the effective elastic 
moduli of a linearly elastic isotropic materials with voids. Cowin and Nunziato (1983) established the linear 
theory of elasticity with voids, while Nunziato and Cowin (1979) derived the non-linear theory of elastic 
materials with voids. Puri and Cowin (1985) studied the behavior of plane harmonic waves in linear elastic 
materials with voids. Chandrasekharaiah (1987a; b) investigated the effect of voids on Rayleigh-Lamb waves 
in a homogeneous elastic plate with voids. Results on linear and non-linear problems in thermoelastic with 
voids have been obtained by many researchers such as Dhaliwal and Wang (1994); Scarpetta (1995), Iesan 
and Quintanilla (1995); Quintanilla (2001). Wright (1998) studied the relationship between theories of 
effective moduli and dynamical theory of materials with voids. Singh and Tomar (2007) studied the 
propagation of plane waves in an infinite thermoelastic medium with voids using the theory developed by 
Iesan (1986).  
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 The basic assumption in classical continuum mechanics is that the effect of microstructure of a 
material is not essential for describing the mechanical behavior. Such an approximation has been shown in 
many well known cases. However, discrepancies between the classical theory and experimental are often 
observed indicating that microstructure might be important. A theory in which some considerations are given 
to microstructure is the theory of micropolar continuum mechanics. The difference between the micropolar 
and classical theory of elasticity is related to the fact that the deformation and microrotation have six degrees 
of fredom. Eringen (1968; 1986) gave a complete description of the linear theory of micropolar elasticity . 
for application ,it can be modeled composites with rigid choped fibers, elastic solids with granular inclusion 
and industrial materials such as liquid crystals. The linear theory of micropolar thermoelasticity was 
developed by extending the theory of micropolar continua to include the thermal effect. A comprehensive 
review of the subject was given by Eringen (1970; 1999) and Nowacki (1986). 
 Ciarletta and Straughan (2007) presented a model for coupled elasto-acoustic waves, thermal waves 
and waves associated with voids, in a porous medium. Miglani and Kaushal (2011) investigated two 
dimensional problems in a micropolar elastic medium with voids. Kumar and Panchal (2011) studied circular 
crested waves in a micropolar porous medium possessing cubic symmetry. Kumar et al. (2012) investigated 
deformations due to various sources in a micropolar elastic solid with voids under inviscid liquid half space. 
Aouadi (2012a) studied the uniqueness and existence theorems in thermoelaticity with voids without energy 
dissipation. Aouadi et al. (2012b) studied the problem of exponential decay in thermoelastic materials with 
voids with dissipative boundary without thermal dissipation. 
 The inelastic behavior of the earth’s material plays an important role in changing the characteristics 
of seismic waves. The general theory of viscoelasticity describes the linear behavior of both elastic and 
inelastic materials and provides the basis for describing the attenuation of seismic waves due to inelasticity. 
 Eringen (1967) extended the theory of micropolar elasticity to obtain the linear constitutive theory 
for a micropolar material possessing internal friction. The problem of micropolar viscoelastic waves was 
discussed by McCarthy and Eringen (1969). They discussed the propagation conditions and growth 
equations governing the propagation of waves in a micropolar viscoelastic medium. Manole (1988) 
established the uniqueness theorem in the theory of linear viscoelasticity and in the theory of micropolar 
linear visoelasticity by using the Laplace transform technique. Manole (1992) presented variational theorems 
in the linear micropolar viscoelastic solid. 
 Gale (2000) studied Saint-Venant’s problem of micropolar viscoelasticity. Kumar (2000) 
investigated wave propagation in a micropolar viscoelastic generalized thermoelastic solid. Dynamical 
problems of micropolar visoelasticity was discussed by Kumar and Chaudhary (2001). Kumar and 
Chaudhary (2005a; b) studied the deformation and disturbance due to a time harmonic source in an 
orthotropic micropolar viscoelastic medium. Kumar and Partap (2010) investigated Rayliegh-Lamb waves in 
microstrech viscoelastic media. Ezzat and Atef (2011) investigated the problem of a magnetothermo-
viscoelastic material with a spherical cavity. Svanadze (2012) studied the problem of a potential method in 
the linear theories of viscoelasticity and thermoviscoelasticity for Kelvin-Voigt materials. Luppe et al. 
(2012) investigated the problem of effective wave numbers for thermoviscoelastic media containing a 
random configuration of spherical scatters. 
 To investigate the boundary value problems of the theory of elasticity and thermoelasticity by the 
potential method, it is necessary to construct the fundamental solution to a system of partial differential 
equations and to establish their basic properties respectively. Hetnarski (1964a; b) was the first to study the 
fundamental solutions in the classical theory of coupled thermoelasticity. The fundamental solutions in the 
microcontinuum field theories were constructed by Svanadze (1988; 1996; 2004a; b; 2007). The information 
related to fundamental solutions of differential equations is contained in the books of Hởrmander (1963; 
1983). Kumar and Kansal (2012a) discussed the plane wave and the fundamental solution in the generalized 
theories of thermoelastic diffusion.   
 In this paper, the fundamental solution to a system of differential equations in the case of steady 
oscillation in terms of elementary functions has been considered.           
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2. Basic equations 
 

 Following Eringen (1967), Iesan (2011) and Lord-Shulman (1967), the basic equations in a 
homogeneous isotropic micropolar viscothermoelastic solid in the absence of body force, body couple, 
equilibrated force and heat sources are 
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 In these relations  is the density, u  is the displacement vector, φ  is the microrotation vector,   is 

the volume fraction field, j is microinertia, C is the specific heat at constant strain, 0T T   is a small 

temperature increment,   is the absolute temperature of the medium, 0T  is the reference temperature of the 

body choosen such that 
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equilibrated inertia, 1K  is thermal conductivity and * * * * * * * *, , , , , , , , , , , , , , ,K K               are material 

constants of the theory, 0 0   for the theory of coupled viscothermoelasticity model. 

 Let  , ,1 2 3X x x x  be the point of the Euclidean three-dimensional space E3, 
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where 
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and *
1  is the characteristic frequency.  

  Making use of these dimensionless quantities defined by Eq.(2.6) in Eqs (2.1)-(2.4), after 
suppressing the primes yields 
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 We assume the displacement vector, microrotation vector, volume fraction field and temperature 
change as 
 

   ( , ), ( , ), ( , ), ( , ) Re[ , , , ] i tx t x t x t T x t T e   u uφ                                           (2.11)  

 
where   is the frequency. 
 Making use of Eq.(2.11) in Eqs (2.7)-(2.10) and after ommiting the bars, we obtain the system of 
equations for steady oscillation as 
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 Introducing the matrix differential operator 
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 Here mrn  is the alternating tensor and mn  is the Kronecker delta function. 
 The system of Eqs (2.11)-(2.14) can be written as 
 
  ( ) ( )xF D U x 0       (2.18) 
 
where  , , ,U T u φ  is an eight-component vector function on E3. 

 Assuming that 
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 If condition (2.19) is satisfied, then F is an elliptic differential operator given by Hormader (1963). 
The fundamental solution to the system of Eqs (2.12)-(2.15), (The fundamental matrix of operator F) is the 

matrix ( ) ( )gh 8 8
G x G x


  satisfying conditions  

 

  
( ) ( ) ( ) ( )xF D G x x I x                                                                  (2.20) 

 

where   is the Dirac delta function, gh 8 8
I


   is the unit matrix and 3Ex . 

  
2.1. Fundamental solution to the system of equations of steady oscillations 
 
 We consider the system of equations 
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 The above equation may be written in the form  
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where ,2 2
4 5   are the roots of the ( )2   w.r.t κ . 

 Applying the operator curl3  to Eq.(2.21) and 2
1     to Eq.(2.22) respectively , we obtain 
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 From Eqs (2.30), (2.42) and (2.51) results 
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 From Eqs (2.25), (2.55) and (2.58) we obtain 
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 We will prove the following Lemma: 
Lemma: The matrix Y is the fundamental matrix of the operator ( )  , i.e., 
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Proof: To prove the above Lemma, it is sufficient to prove that 
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 Now we find that 
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 Equations (2.63) and (2.64) can be proved similarly. 
Introducing the matrix 
 

  
( ) ( ) ( )xG x R D x  .                                                                                                    (2.66) 

 

 From Eqs (2.60), (2.61) and (2.66), we obtain 
 

  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )x x xF D G x F D R D x x x I x      

                                 (2.67) 
 

where ( )G x  is a solution to Eq.(2.20). 
 Therefore, we proved the following theorem. 
 Theorem: The matrix ( )G x  defined by the Eq.(2.66) is the fundamental solution to the system  
of Eqs (2.12)-(2.15). 
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3. Basic properties of the matrix ( )G x  
 
 Property 1. Each column of the matrix ( )G x  defined by Eq.(2.66) is the solution to the system of 

Eqs (2.12)-(2.15) at every point 3x E  except the origin. 
 Property 2. The matrix ( )G x  can be written in the form 
 

       

  

 

 

 

 

, ,

,

( ) ( ),

( ) ( ),

( ) ( ),

( ) ( ), , ,................ , , , .

gh 8 8

mn mn x 11

m n 3 m n 3 x 44

m7 m7 x 77

m8 m8 x 88

G G

G x R D x

G x R D x

G x R D x

G x R D x m 1 2 8 n 1 2 3



 



 

 

 

   

 

 

 If we take * * * * * * * * *, , , , , , , ,K 0         , we obtain the resulting expressions for micropolar 
thermoelastic solids with one relaxation time and these results are similar to those obtained by Svandze 
(2007). 
 
4. Conclusion 
 
 The fundamental solution ( )G x  to the system of Eqs (2.12)-(2.15) makes it possible to investigate 
three-dimensional boundary value problems of the generalized theory of micropolar thermoelastic solids 
with voids by the potential method Kupradge et al. (1979). 
 
Nomenclature 
 

 C – specific heat at constant strain 
 j  – microinertia 
 1K  – thermal conductivity  

 0T T    – small temperature increment 

 0T  – reference temperature of the body choosen such that 
0

T
T 1  

 u  – displacement vector 
        , ,1 2 3X x x x  – point of the Euclidean three-dimensional space E3  

       
 , , ,

, ,

1
22 2 2

1 2 3

x
1 2 3

x x x x

D
x x x



   
  

   

  

             t  – coefficient of linear thermal expension 

  =
2 2 2

2 2 2
1 2 3x x x
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1 2 3

i j k
x x x

     
    

   
  

   – absolute temperature of the medium 

 
*

* * * * * * *

, , , , , , , , ,

, , , , , ,

K

K

       

     
 – material constants 

               – density 

 0  – relaxation time 

    – volume fraction field 
 φ  – microrotation vector 
   – equilibrated inertia 

             *
1  – characteristic frequency 
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